
“Hello, SQL”
An Introduction

By Olivia Schulist
Biostatistics Computing Club Spring 2024
Columbia Mailman School of Public Health

Case Study

Premise
Columbia’s MNE research group
administers surveys to migrant

populations in active transit. The team
wishes to create a relational database
to store and expand upon their data

efficiently, and prepare queries to
generate datasets for preliminary data

analysis using STATA.

What is a relational database?
- Stores data in tables and relations
- Each row contains unique information
- Minimize redundancies
- Efficient data retrieval
- Queries merge tables based on shared attributes
- Handle big data
- Attributes (columns) and records/instances (rows)

Relational Database Management System (RDBMS)
- Types: MySQL (Oracle), SQL Server (Microsoft), Oracle, MS Access

What is SQL?
Structured Query Language

Standard programming language for
maintaining a database

Dr. E.F. Codd, IBM, 1970

Query a database to retrieve, add,
alter, update, delete

Why SQL?
- Standard for big data storage and

retrieval
- Protections for data integrity
- Powers YouTube, Twitter, Facebook
- Integrate with R Shiny app, Python,

HTML, R and SAS procedures
- Common in job descriptions
- Similar to the English language
- “Easy to learn”, intuitive
- Documentation and resources

- Graphical user interface

MySQL
- One of the earliest open source relational

database management systems (RDBMS)
to be developed and launched (1995)

- Supports SQL

MySQL Workbench

MySQL Workbench

Relational
Database
Schema

EER Diagram
Enhanced-Entity Relationship

Conceptual Framework

Issues?

Questionnaire -> Data Entry ->

Dataset:

Issues?
Redundancies

Memory-intensive variable lengths
Number of fields per table can slow query performance

when queries do not require all fields

Questionnaire -> Data Entry ->

Dataset:

Normalization
Basic Principles:

- Separate tables per topic
- Separation of multi-component

variables into new variables of
smallest component parts

- Character-saving keys for table
merges

More
detail
later!

Can merge
to find just
what you

need later!

Library Schema

Common Keys

Can merge
to find just
what you

need later!

How many books by Dickens were checked out in February?

Can merge
to find just
what you

need later!

How many books by Dickens were checked out in February?
Which Dickens titles are completely missing from the shelves
and when should each missing title return to the shelves?

MNE Example

1. Identify and name variables
2. Create topical tables
3. Establish table relationships
4. Create indices
5. Prepare queries for use cases

Process

Select Variables
- Elements that vary by subject
- Keys for repetitive strings

Name Variables
- Letters and numbers, start with a letter
- Underscores, no periods
- Singular descriptors (ex: store_name)
- Lowercase snake_case over camelCase or PascalCase

Cluster Variables
- Plural descriptors for tables (ex: stores)

MySQL Workbench

Table Creation
Simple Example:

More on syntax
to come!

Types:

- CHAR, VARCHAR (variable length)
- INT, TINYINT, SMALLINT, BIGINT
- DECIMAL, FLOAT (approximate)
- DATE, DATETIME, TIMESTAMP

Properties:

- UNSIGNED to reduce storage load
- UNIQUE constraint
- DEFAULT
- FOREIGN KEY, PRIMARY KEY:

Variable Definition

Primary Key
- Column(s) whose values act

as unique row identifiers
- “No duplicates, ever” after

normalization
- Composite primary key:

multiple variables that in
concert uniquely identify rows

- Autonumber primary key:
gives each row a unique
identifier number

- Links to another table

Foreign Key
Table Relationships

Migration Example:

Schema Examples

Star Snowflake

DQL Syntax

Terminology
DDL - Data Definition Language - CREATE database, ALTER table, DROP variable, TRUNCATE, RENAME

DQL - Data Query Language - SELECT, WHERE, JOIN, GROUP BY, ORDER BY

DML - Data Manipulation Language - SELECT, INSERT, UPDATE, DELETE

DCL - Data Control Language - GRANT, REVOKE

TCL - Transaction Control Language - COMMIT, ROLLBACK, SAVEPOINT, SET TRANSACTION

Inserting Values
INSERT INTO table_name

 (column_1, column_2)
VALUES (value_1, value_2);

INSERT INTO staff (staff_id,
last_name, first_name, age)

VALUES (1, ‘Smith’, ‘Bob’, 32),
(2, ‘Jacobs’, ‘Elizabeth’, 21);

Editing Tables
UPDATE staff
SET first_name = Robert
WHERE staff_id = 1;

ALTER TABLE table_name
ADD [COLUMN] column_name

data_type [FIRST | AFTER
Column_name];

Basics
- Command words
- Semicolons, parentheses, commas, operators
- Conventional to capitalize main functions
- Clauses
- Ending with semicolon
- Standard to use aliases in queries

Queries

SELECT
FROM
WHERE
GROUP BY
HAVING
ORDER BY

SELECT
FROM
WHERE
GROUP BY
HAVING
ORDER BY

Order of processing:

FROM
WHERE
GROUP BY
HAVING
ORDER BY

Order of processing:

FROM: table from which to extract the
base data records
WHERE: filters base data
GROUP BY: aggregates base data
HAVING: filters aggregated base data
SELECT: returns final data
ORDER BY: sorts final data

SELECT variable_or_column
FROM table_name
WHERE filter
GROUP BY aggregate_by
HAVING filter_on_aggregated_vlaue
ORDER BY arrange_by

WITH cte_name AS (SELECT…)

SELECT
FROM (SELECT…)
WHERE
GROUP BY
HAVING
ORDER BY

JOIN/UNION

SELECT…

Tools
Asterisks (*) for ALL

AS

DISTINCT (SELECT DISTINCT)

UNIQUE (primary keys)

RANK

LEAD

LAG

NOT LIKE “”

RANK()

DENSE_RANK()

ROW_NUMBER()

OVER()

PARTITION_BY

TOP

LIMIT

AUTONUMBER

AUTO_INCREMENT

Examples

SELECT patient, weight, height
FROM hospital
ORDER BY weight
LIMIT 3;

SELECT COUNT(facility) AS facility_count
FROM hospital;

SELECT COUNT(*) AS doctor_count
FROM doctors
WHERE doc_last_name = 'Miller';

SELECT provider, COUNT(patient) AS patient_count
FROM hospital
GROUP BY provider
HAVING patient_count >= 2;

SELECT customer_name
FROM customers
WHERE customer_name LIKE “%Ltd”;

SELECT doctor_id, COUNT(*) AS record_count
FROM medical_records
GROUP BY doctor_id
ORDER BY record_count DESC;

Joins
SELECT *

FROM

LEFT(/RIGHT/CENTER/INNER/OUTER/FULL OUTER) JOIN

SELECT a.*, b.drug_name
FROM table1 AS a

LEFT JOIN table2 AS b
ON a.drug_key = b.drug_key

AND a.dtype_key = b.dtype_key;

SELECT a.name, c.drug_type, b.drug_name
FROM table1 AS a

LEFT JOIN table2 AS b
ON a.drug_key = b.drug_key
LEFT JOIN table3 AS c
ON b.dtype_key = c.dtype_key;

Conditional Logic
SELECT patient, weight
FROM hospital
WHERE provider = ‘Provider X’ OR provider = ‘Provider Y’;

SELECT patient, weight
FROM hospital
WHERE provider = ‘Provider X’ AND weight > 90;

SELECT *
FROM doctors
WHERE doctor_id IN (1, 2, 3);

CASE statements ->

CASE (new variable)
CASE

WHEN condition1 THEN result1
WHEN condition2 THEN result2
WHEN conditionN THEN resultN
ELSE result

END AS variable_name

SELECT patient, weight,
CASE

WHEN height > 70 THEN “Tall”
WHEN height > 65 THEN “Average”
WHEN height <= 65 THEN “Short”
ELSE “N/A”

END AS height_cat
FROM hospital;

UNION (Append)
- UNION ALL allows duplicates

Aggregate Functions
Window Functions

Window Functions
- Calculation across a set of rows
- Repeat values

Aggregate Function

SELECT column_names,
Aggregate_Function
OVER(PARTITION BY column_names) AS alias

FROM table_name;

- Groups outputs
- Reduces redundancies

Temporary Tables
Derived Tables**
Subqueries
CTEs
Views

CTE

WITH cte_name AS
(SELECT column_names
FROM table_name
GROUP BY column_names)

SELECT column_names
FROM cte_name;

Temporary Table
CREATE TEMPORARY TABLE avg_wt AS

(SELECT facility, AVG(weight) AS avg_weight
FROM Hospital
GROUP BY facility);

SELECT h.facility, h.patient, h.weight, a.avg_weight
FROM Hospital AS h
LEFT JOIN Avg_wt AS a

ON h.facility = a.facility;

Derived Table

SELECT column_names

FROM (SELECT column_names

FROM table_name

GROUP BY column_names) AS derived

WHERE condition;

Subquery
SELECT patient, weight
FROM hospital
WHERE weight > (SELECT weight

FROM hospital
WHERE patient = ‘patient 2’);

SELECT patient, weight
FROM hospital
WHERE weight IN (SELECT MIN(weight)

FROM hospital
GROUP BY facility);

View
CREATE VIEW avg_wt AS

(SELECT facility, AVG(weight) AS avg_weight
FROM Hospital
GROUP BY facility);

SELECT h.facility, h.patient, h.weight, a.avg_weight
FROM Hospital AS h
LEFT JOIN avg_wt AS a

ON h.facility = a.facility;

More Advanced
& Msc.

Database
Normalization

Goals:

- Efficiency
- Scalability

- Minimize runtime
- Maximize disk space

- Maintain referential integrity

Third normal form:

- Columns cannot be computed
based on other columns

- Second normal form:
- Primary key dependency
- First normal form:

- No repeating rows
- No redundant

attributes
- No comma-separated

lists

“Most databases are normalized to
the third form” - Ifra Fayyaz

Pivoting Data
Wide to long:

SELECT student_id, ‘quizzes’ AS category,
quizzes AS points
FROM class_wide;

UNION ALL

SELECT student_id, ‘participation’ AS
category, participation AS points
FROM class_wide,

Long to wide:

SELECT student_id, category, points
FROM class
WHERE category = “quizzes”;

SELECT student_id,
SUM(CASE

WHEN category = “quizzes” THEN points
ELSE 0
END

) AS quizzes
FROM class
GROUP BY student_id;

Or JOIN

Referential Integrity
Orphaned record: lost row in parent table

Declarative referential integrity (DRI):

UPDATE CASCADE: Updates primary table automatically

DELETE CASCADE

SET NULL

SET DEFAULT

NO ACTION

Variable Constraints

Triggers
DELIMITER //
CREATE TRIGGER trigger_name

[BEFORE | AFTER]
INSERT | UPDATE | DELETE]
ON table_name
FOR EACH ROW

BEGIN
trigger body

END; //
DELIMITER ;

DELIMITER//
CREATE TRIGGER payment_check

BEFORE INSERT ON payment
FOR EACH ROW

BEGIN
IF NEW.amount < 0 THEN

SET NEW.amount = 0;
ELSEIF NEW.amount > 11.99 THEN

SIGNALSQL STATE ‘HY000’
SET MESSAGE_TEXT =
‘Invalid entry: amount must
 not exceed $11.99’;

END IF;

END; //
DELIMITER;

Msc.

Indexing
- Automatic for primary keys, foreign keys, and UNIQUE constraints
- For variables that do not change often, to quicken runtime
- Caution: over-indexing will actually slow runtime

Images
Relatively large data type

“Might not want to keep in tables that will be referenced often”

Lead/Lag

Conclusion

Altering Table

EXPLAIN ANALYZE for monitoring performance (runtimes)

SHOW WARNINGS

ALTER TABLE ADD CONSTRAINT

DROP TABLE temp_table;
DROP VIEW view_name;
DROP DATABASE [IF EXISTS] db_name;

Resources
Library resources:

https://web.p.ebscohost.com/ehost/ebookviewer/ebook/ZTAyNXhuYV9fMzI2Nzc5
Ml9fQU41?sid=9b015d9f-cbeb-459c-b33c-c1c1cdb6a229@redis&vid=0&format=EB&
rid=1

MySQL Shorts:
https://www.youtube.com/playlist?list=PLWx5a9Tn2EvG4C90YFJ9eU61IpALeE0SN

LinkedIn Learning

ChatGTP is an okay editor

Email: ofs2111@cumc.columbia.edu

https://web.p.ebscohost.com/ehost/ebookviewer/ebook/ZTAyNXhuYV9fMzI2Nzc5Ml9fQU41?sid=9b015d9f-cbeb-459c-b33c-c1c1cdb6a229@redis&vid=0&format=EB&rid=1
https://web.p.ebscohost.com/ehost/ebookviewer/ebook/ZTAyNXhuYV9fMzI2Nzc5Ml9fQU41?sid=9b015d9f-cbeb-459c-b33c-c1c1cdb6a229@redis&vid=0&format=EB&rid=1
https://web.p.ebscohost.com/ehost/ebookviewer/ebook/ZTAyNXhuYV9fMzI2Nzc5Ml9fQU41?sid=9b015d9f-cbeb-459c-b33c-c1c1cdb6a229@redis&vid=0&format=EB&rid=1
https://www.youtube.com/playlist?list=PLWx5a9Tn2EvG4C90YFJ9eU61IpALeE0SN
mailto:ofs2111@cumc.columbia.edu

Questions?

Other Examples

Other Terminology
One-to-one relationship: one record links to many rele

One-to-many relationship: one record in

Parent table: referenced table

Child table: contains the foreign key that links to the child table

Lookup table: look up values by key

Fact table: stores mainly numeric values, highly optimized

Dimension table: details dimension table with longer labels

Linking/connecting/associate/intermediary table: temporary
data to be referenced

One group via group key is linked
to many partnerships

