Introduction to High Performance Computing Cluster at CUIMC

Zilan Chai

March 2022

Overview

- Access to HPC
 - Login
 - Linux command
 - Transferring files between local and HPC
- ➢ R version and installation of R packages
- Submitting jobs
 - qsub command
 - Example of a shell script
 - Parallel computing via multiple tasks under a single job
- Check Cluster Usage

Access to HPC

Contact HPC team to set up an account

https://www.mailman.columbia.edu/information-for/information-technology/high-performance-computing-hpc

Login through terminal ssh uni@login.c2b2.columbia.edu

Basic Linux Commands

- cd cite directory
- cd . current directory
- cd .. go back to last folder
- cd ~ go back to root folder
- ls list everything under this directory
- ls -1 list long
- man ls help with command
- q quit
- pwd pass working directory
- nano create file
- cat print content of file
- clear clear the screen
- mkdir create folder
- cp copy file
- vi view (exit the view mode: esc : q! enter)
- mv a.txt b.txt change file name from "a" to "b"

Examples:

cd /ifs/scratch/msph/biostat/zc2326

cd /ifs/home/msph/biostat/zc2326

Note: all the jobs should be submitted under the scratch folder, not home.

Transferring files between local and HPC

- 1. scp command
- 2. Mac OS cyberduck

- 3. Windows Winscp
- 1. scp command
- Transfer a file from your computer to the cluster

scp -r /local directory/filename.text youruni@login.c2b2.columbia.edu:/ifs/scratch/msph/biostat/youruni

Copying files from cluster

scp youruni@login.c2b2.columbia.edu:/ifs/scratch/msph/biostat/youruni/JOBNAME* /local directory

-r : Transfer Entire Folder

Mac OS – cyberduck

Open Connection, select "SFTP (SSH File Transfer Protocol)"

Server: login.c2b2.columbia.edu

Use uni and password to login.

	Cyberduck		
© +	✓ ☆ (
Open Connection Quick Cor	nect Action Ref	resh Edit	
	🔮 SFTP (SSH File T	ransfer Protocol)	
	Server:	login.c2b2.columbia.edu	Port: 22
	URL:	sftp://login.c2b2.columbia.edu	
	Username:	yourun	
	Password:	Password	
		Anonymous Login	
	SSH Private Key:	None	
	Add to Keychain	? Cancel	Connect

R version and installation of R packages

• Use R in cluster:

qrsh

/nfs/apps/R/3.6.0/bin/R

- Create a version specific directory in home directory to save R libraries.
- Install R packages:

[-bash-4.1\$ qrsh -bash-4.1\$ /nfs/apps/R/3.4.1/bin/R
R version 3.4.1 (2017-06-30) "Single Candle" Copyright (C) 2017 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details.
Natural language support but running in an English locale
R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R.
arks I> q⊖ ∽······

install.packages("Package_Name", "/ifs/home/msph/biostat/youruni/R_LIB", dependencies = TRUE, repos = "http://cran.rstudio.com/")

[-bash-4.1\$ cd /ifs/home/msph/LeeLab/zc2326/R_LIB [-bash-4.1\$ ls Bi bindrcpp crayon dplyr glue MCMCpack pkgconfig RAMP rlang tibble bindri clipyont dfcrm glinternet MASS pillar plogr Rcpp rstiefel utf8

Submitting Jobs

qsub runR.sh refund.R # passing this R file to \$1 in the shell file.

qdeldelete a jobqstatcheck job status# r: running , t: transferingqdel -u usernamekill all jobs submitted by user usernamedel -j jobIDgacct -j 4964255# tells every things about the job, memory/time it takes;

Submitting Jobs - Write a Shell file

- -S /bin/bash telling it this is a bash script
- #! /bin/sh indicating this is a shell doc
- -cwd change working directory results go under this directory
- -l mem =1G memory you require in the cluster
- -l time = 01:10:00 time in hour:minute:second

-j y

file.

- -N R-code_simu the name of the result file will be this
 - error file & result file, generate those two files into one
- SCRIPT = \$1 place holder for my R code

Submitting Jobs - Shell file example

#!/bin/sh
#\$ -cwd -S /bin/bash
#\$ -1 mem=1G
#\$ -1 time=:5:
#\$ -N R-code_simu -j y

SCRIPT=\$1

R=/nfs/apps/R/3.1.1/bin/R

R_LIBS_USER=/ifs/home/msph/LeeLab/zc2326/R_LIB:/ifs/scratch/msph/software/R /library311:/ifs/scratch/msph/software/R/library:\$R_LIBS_USER

\${R} --vanilla < \${SCRIPT}</pre>

Submitting Jobs – Parallel computing

> Parallel computation via multiple tasks under a single job

- Use task id to specify simulation setting
- Always remember to include code in R script for saving results.

- Example 1 (Simulation):
- 3 parameters: R, m, n

Here are the possible values of these parameter:

R = (80, 100) m = (1, 2, 3) n = (20, 25, 30)

You have a fancy Simulation function: fun(R, m, n)

Want to run simulation for all possible combinations of the parameters.

#!/bin/bash
#\$ -cwd -l mem=3g,time=00:10:00 -S /bin/bash -N JOBa1 -j y -t 1-18

example1.sh currind=\$SGE_TASK_ID

R=/nfs/apps/R/3.6.0/bin/R
export R_LIBS_USER=/ifs/home/msph/biostat/zc2326/R_LIB:/ifs/scratch/msph/software/R/library360:/
ifs/scratch/msph/software/R/library:\$R_LIBS_USER

\${R} --vanilla --args \$currind < example1.R</pre>

example1.R

```
qsub example1.sh example1.R
```

```
args<-commandArgs(TRUE)
 2 currind <-as.integer(args[1])</pre>
    print(currind)
 3
 5 R.candi <- c(rep(80, 9), rep(100 ,9))
 6 m.candi <- rep(c(rep(1, 3), rep(2, 3), rep(3, 3)), 2)
    n.candi <- rep(c(20, 25, 30), 6)
 8
    para <- cbind( R.candi, m.candi,n.candi)
 9
10
11 - fun <- function(R, m, n){
      Q = R + m + n
12
13
      c(R, m, n, Q)
14
    }
15
16 for (ii in 1:length(R.candi)){
    if(ii==currind) {
17 -
        t \leftarrow fun(para[ii,1], para[ii,2], para[ii,3])
18
19
20
21
22
   write.csv(t, file = paste0("res", currind, ".csv"))
```

- Example 2 (Bootstrap):
- In order to conduct 10,000 bootstraps, you can split the job into 10 separate jobs, each with 1,000 bootstraps.
- Each job returns a csv file with the results. Then combine all results and do the analysis.

```
args<-commandArgs(TRUE)
currind <-as.integer(args[1])
print(currind)

B <- 1000
for (ii in 1:10){
    if(ii==currind) {
        for (i in 1:B){
            p.res <- BS_EM_ABO(260, 270, 420, 70, 10000)
            }
        }
write.csv(p.res, file = paste0("thirdproblem", currind, ".csv"))</pre>
```

Check cluster usage

qacct -o zc2326 -b 202203010000 -e 202203161600

• The result will show mem and cpu usage in second

Calculate: Cpu(s)*0.02/3600 + mem(s)*0.0067/3600 <\$2000